

Welcome to gzip_static’s documentation!

Installation

gzip_static can be installed with pip install gzip_static. There are no
dependencies by default.

The following packages can be installed to enhance the functionality of
gzip_static.

	zopfli [https://pypi.org/project/zopfli/] adds zopfli compression to
gzip_static. Zopfli compressed files can be decompressed with any
gzip-compatible tool and the compressed size is a few percent smaller than
files compressed with gzip level 9. This comes with much increased
compression time (~125x increase or thereabouts depending on the website).
This works great for files that aren’t changed much or at all but always
downloaded like stylesheets.

	xxhash [https://pypi.org/project/xxhash/] speeds up the checksumming process.
This makes gzip-static about 28% faster when running on a website folder
with all the gzip files up to date.

	isal [https://pypi.org/project/isal/] speeds up the decompression of gzip
files during the checksumming process. This makes gzip-static about 66% faster
when running on a website folder with all the gzip files up to date.
Isal is only available on 64-bit platforms.

Together xxhash and isal decrease the runtime of checksumming by about 60%,
so it is about 2.5 times faster.

These dependencies are all optional and can be installed separately in the
environment or with the optional dependency commands:

	pip install gzip_static[zopfli] installs gzip_static and zopfli.

	pip install gzip_static[performance] installs gzip_static, xxhash and isal.

	pip install gzip_static[full] installs gzip_static, zopfli, xxhash and isal.

Usage

gzip-static usage

usage: gzip-static [-h] [-e EXTENSIONS_FILE] [-l {6,9,11} | --zopfli] [-f]
 [--remove-orphans] [-d]
 directory

Positional Arguments

	directory

	The directory containing the static site

Named Arguments

	-e, --extensions-file

	A file with extensions to consider when compressing. Use one line per extension. Check the default for an example. DEFAULT: /home/docs/checkouts/readthedocs.org/user_builds/gzip-static/envs/latest/lib/python3.7/site-packages/gzip_static-0.1.0-py3.7.egg/gzip_static/extensions.txt

Default: /home/docs/checkouts/readthedocs.org/user_builds/gzip-static/envs/latest/lib/python3.7/site-packages/gzip_static-0.1.0-py3.7.egg/gzip_static/extensions.txt

	-l, --compression-level

	Possible choices: 6, 9, 11

The compression level that will be used for the gzip compression. Use 11 for zopfli compression (if available). Default: 9

Default: 9

	--zopfli

	Use zopfli for the compression. Alias for -l 11 or –compression-level 11.

	-f, --force

	Force recompression of all earlier compressed files.

Default: False

	--remove-orphans

	Remove gzip files for which the parent file is missing and for which the extension is in the extensions file. For example: page3.html.gz present but no page3.html is present. In that case page3.html.gz will be removed.

Default: False

	-d, --debug

	Print debug information to stderr.

Default: False

gzip-static-find-orphans usage

usage: gzip-static-find-orphans [-h] [-e EXTENSIONS_FILE] directory

Positional Arguments

	directory

	The directory containing the static site

Named Arguments

	-e, --extensions-file

	A file with extensions to consider when compressing. Use one line per extension. Check the default for an example. DEFAULT: /home/docs/checkouts/readthedocs.org/user_builds/gzip-static/envs/latest/lib/python3.7/site-packages/gzip_static-0.1.0-py3.7.egg/gzip_static/extensions.txt

Default: /home/docs/checkouts/readthedocs.org/user_builds/gzip-static/envs/latest/lib/python3.7/site-packages/gzip_static-0.1.0-py3.7.egg/gzip_static/extensions.txt

API Documentation: gzip_static

Functions to compress a website’s static files.

	
class gzip_static.GzipStaticResult(created: int, updated: int, skipped: int, deleted: int)

	A class containing the results for the gzip_static function.

	
property created

	Alias for field number 0

	
property deleted

	Alias for field number 3

	
property skipped

	Alias for field number 2

	
property updated

	Alias for field number 1

	
gzip_static.compress_idempotent(filepath: Union[str, os.PathLike], compresslevel=9, hash_algorithm=<built-in function openssl_sha1>, force: bool = False) → int

	Only compress the file if no companion .gz is present that contains the
correct contents.

This function ensures the mode, atime and mtime of the gzip file are
inherited from the file to be compressed.

	Parameters

	
	filepath – The path to the file.

	compresslevel – The compression level. Use 11 for zopfli.

	hash_algorithm – The hash_algorithm to check the contents with.

	force – Always create a new ‘.gz’ file to overwrite the old one.

	Returns

	An integer that stands for the action taken. Matches with
the COMPRESSED, RECOMPRESSED and SKIPPED constants in this module.

	
gzip_static.compress_path(filepath: Union[str, os.PathLike], compresslevel: int = 9, block_size: int = 32768) → None

	Compress a file’s contents and write them to a ‘.gz’ file.

Similar to gzip -k <filepath>

	Parameters

	
	filepath – The path to the file

	compresslevel – The gzip compression level to use. Use 11 for zopfli
compression.

	block_size – The size of the chunks read from the file at once.

	
gzip_static.find_orphaned_files(dir: Union[str, os.PathLike], extensions: Container[str] = frozenset({'.css', '.htm', '.html', '.js', '.json', '.rss', '.svg', '.txt', '.xml', '.xsl'})) → Generator[str, None, None]

	Scan a directory recursively for ‘.gz’ files that do not have a parent file
with an extension in extensions.

For example find_orphaned_files(my_dir, set(".html")) will find
index.html.gz if index.html is not present. It will not find
myhostedarchive.tar.gz as .tar is not in the set of extensions.

	Parameters

	
	dir – The directory to scan.

	extensions – Extensions of parents file to include.

	Returns

	A generator of filepaths of orphaned ‘.gz’ files.

	
gzip_static.find_static_files(dir: Union[str, os.PathLike], extensions: Container[str] = frozenset({'.css', '.htm', '.html', '.js', '.json', '.rss', '.svg', '.txt', '.xml', '.xsl'})) → Generator[str, None, None]

	Scan a directory recursively for files that have an extension in the set
of extensions.

	Parameters

	
	dir – The directory to scan.

	extensions – A set of extensions to scan for.

	Returns

	A generator of filepaths that match the extensions.

	
gzip_static.get_extension(filename: str)

	The filename’s extension, if any.

This includes the leading period. For example: ‘.txt’

	
gzip_static.gzip_static(dir: Union[str, os.PathLike], extensions: Container[str] = frozenset({'.css', '.htm', '.html', '.js', '.json', '.rss', '.svg', '.txt', '.xml', '.xsl'}), compresslevel: int = 9, hash_algorithm=<built-in function openssl_sha1>, force: bool = False, remove_orphans: bool = False) → gzip_static.GzipStaticResult

	Gzip all static files in a directory and its subdirectories in an
idempotent manner.

	Parameters

	
	dir – The directory to recurse through.

	extensions – Extensions which are static files.

	compresslevel – The compression level that is used when compressing.

	hash_algorithm – The hash algorithm is used when checking file
contents.

	force – Recompress all files regardless if content has changed or
not.

	remove_orphans – Remove ‘.gz’ files where the parent static file is
no longer present.

	Returns

	A tuple with 4 entries. The number of compressed, recompressed,
skipped and deleted gzip files.

	
gzip_static.hash_file_contents(filepath: Union[str, os.PathLike], hash_algorithm=<built-in function openssl_sha1>, block_size: int = 32768) → bytes

	Read contents from a file and return the hash.

	Parameters

	
	filepath – The path to the file. Paths ending in ‘.gz’ will be
automatically decompressed.

	hash_algorithm – The hash algorithm to use. Must be
hashlib-compatible.

	block_size – The size of the chunks read from the file at once.

	Returns

	A digest of the hash.

	
gzip_static.read_extensions_file(filepath: Union[str, os.PathLike]) → Set[str]

	Read a file where there is an extension on each line

	Parameters

	filepath – The extensions file

	Returns

	a set of extensions.

Technical considerations

Choosing a checksum

Different checksums were considered. MD5 is traditionally used for
checksumming, but also SHA-1, SHA-256 and SHA-512 see use as a hashing
algorithm nowadays. Traditionally, cyclic redundancy checks are performed.
These are available in the Python zlib libraries as the crc32 and
adler32 functions. A fast method called XXHash [https://cyan4973.github.io/xxHash/] is also available nowadays for hashing.
There are Python bindings available as a
package on PyPI.

As highlighted in this answer on bleepcoder by the XXHash author [https://bleepcoder.com/xxhash/468794876/xxhash-as-checksum-for-error-detection]
cyclic redundancy checks have slightly worse collisions than modern hash
algorithms.

The XXHash homepage [https://cyan4973.github.io/xxHash/] has a list of
algorithms and their speeds. The SHA1 hash algorithm is the fastest
algorithm available in hashlib.algorithms_guaranteed.
(This was verified on two different PC’s). Therefore it was chosen as default.
The XXH3_128 algorithm is used when XXhash is installed.

Speedy hashing of small gzip files

Speedy hashing of normal files is quite easy. Open a file, read it in blocks,
feed each block to the hasher and get a checksum in the end. Choose a decent
block size to speed it up slightly. (32K was used here. 128K is used by cat
so choosing more than Python’s default of 8K is quite common).

Speedy hashing of gzip files presents a problem. We can simply use Python’s
gzip.open which returns a GzipFile, but that is slow. Just like normal
open this creates an interface to read the file, but then it gets more
complicated. This gets wrapped into a _PaddedFile object which is then
wrapped into a _GzipReader object which is then wrapped by the GzipFile.
All these layers solve two problems:

	A controlled number of bytes can be read from the compressed file. Since the
compression ratio can differ along the file it is impossible to grab a
certain number of bytes and exactly know the size of the output once
decompressed. _GzipReader.read has mechanisms built-in to always output
the desired numbers of bytes.

	Gzip allows for multiple members (each consisting of header, compressed body and
trailer) to be concatenated together. After a member is decompressed the
remaining bytes in the file must be checked for another gzip member.

This functionality creates a lot of overhead. Using Python’s zlib.decompress
with wbits=31 solves this problem as it can compress an in-memory block
in its entirety. It cannot read multiple members but since these gzip files
are compressed by gzip_static itself we know they only contain one member.

However this presents another problem: files have to be read in memory entirely.
This was solved by using a zlib.decompressobj instead and using the
decompress method on that object. This works with streaming decompression.
It is not a problem that we do not know before which number of bytes is returned
by the function. This is typically in the 3-6 times the input bytes range.
At best gzip can compress at ratios of ~1000x. (Tested with all zeroes binary,
all ones binary, and a repetition of a single character). So if the input
block size is 8k, we can expect at most 8M bytes be read in memory. This is
acceptable, and this way even large static files of several hundreds of MB can
be checksummed in a streaming fashion.

The great advantage of this method is that most gzip’s will be smaller than 8k.
So only one decompress call is needed. This is almost as fast as in-memory
decompression with zlib.decompress but allowing streaming.

For example on docs.python.org compressing the static files compresses 6374
static files with a combined size of 481 MB. The resulting gzip sizes are
as follows.

	gzip 8K or below (one decompress call): 3516

	gzip 8K - 16K (two decompress calls): 1560

	gzip 16K -24K (three decompress calls): 565

	gzip 24K - 32K (four decompress calls): 308

	gzip 32k-64k (eight or less decompress calls): 356

	gzip larger than 64k: 69

In total 6305 (99%!) of the gzip files are smaller than 64K and can be
decompressed with eight or less calls. Since the gzip.GzipFile overhead
weighs in very heavy at these small file sizes using zlib.decompressobj
creates a notable speed improvement, reducing decompression time by about
~30% for the docs.python.org website.

The speedup can be even greater when using
python-isal [https://github.com/pycompression/python-isal]. Using its
isal_zlib.decompressobj reduces the decompression time with more than 50%.

No brotli support

Brotli [https://en.wikipedia.org/wiki/Brotli] is an excellent compression
algorithm. Most browsers support it. There are several reasons why it is not
supported by gzip_static.

	The ngx_brotli module is not provided as a package by either Debian, Ubuntu
or CentOS.

	Supporting two formats simultaneously makes the code more complex.

	brotli_static does not work well with gzip_static [https://github.com/google/ngx_brotli/issues/123]

This project was made to work with nginx’s gzip plugin to host my
websites. The gzip plugin is builtin in
even the simplest nginx package on Debian (nginx-light). Getting brotli to
work however is much more work. It needs to be compiled, but it needs to
compiled exactly with the right instructions. Brotli has been around
since 2013 and has tremendous advantages, but
ngx_brotli has not been packaged in Debian for 8 years. The last release
of Debian (bullseye) had 11294 new packages [https://www.debian.org/News/2021/20210814] but ngx_brotli is nowhere on the
horizon.

Once a properly working ngx_brotli module is packaged in Debian, I am happy
to add brotli support!

Changelog

version 0.1.0

	Publish documentation on readthedocs.

	Make sure the gzip files inherit file attributes from the parent file.

	Add functionality to remove orphaned gzip files.

	Speed up the checksumming process with isal and xxhash.

	Add zopfli support.

	Create functions to compress a website’s static assets idempotently.

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 gzip_static	

Index

 C
 | D
 | F
 | G
 | H
 | M
 | R
 | S
 | U

C

 	
 	compress_idempotent() (in module gzip_static), [1]

 	
 	compress_path() (in module gzip_static), [1]

 	created (gzip_static.GzipStaticResult property), [1]

D

 	
 	deleted (gzip_static.GzipStaticResult property), [1]

F

 	
 	find_orphaned_files() (in module gzip_static), [1]

 	
 	find_static_files() (in module gzip_static), [1]

G

 	
 	get_extension() (in module gzip_static), [1]

 	
 gzip_static

 	module, [1]

 	
 	gzip_static() (in module gzip_static), [1]

 	GzipStaticResult (class in gzip_static), [1]

H

 	
 	hash_file_contents() (in module gzip_static), [1]

M

 	
 	
 module

 	gzip_static, [1]

R

 	
 	read_extensions_file() (in module gzip_static), [1]

S

 	
 	skipped (gzip_static.GzipStaticResult property), [1]

U

 	
 	updated (gzip_static.GzipStaticResult property), [1]

Changelog

version 0.1.0

	Publish documentation on readthedocs.

	Make sure the gzip files inherit file attributes from the parent file.

	Add functionality to remove orphaned gzip files.

	Speed up the checksumming process with isal and xxhash.

	Add zopfli support.

	Create functions to compress a website’s static assets idempotently.

API Documentation: gzip_static

Functions to compress a website’s static files.

	
class gzip_static.GzipStaticResult(created: int, updated: int, skipped: int, deleted: int)

	A class containing the results for the gzip_static function.

	
property created

	Alias for field number 0

	
property deleted

	Alias for field number 3

	
property skipped

	Alias for field number 2

	
property updated

	Alias for field number 1

	
gzip_static.compress_idempotent(filepath: Union[str, os.PathLike], compresslevel=9, hash_algorithm=<built-in function openssl_sha1>, force: bool = False) → int

	Only compress the file if no companion .gz is present that contains the
correct contents.

This function ensures the mode, atime and mtime of the gzip file are
inherited from the file to be compressed.

	Parameters

	
	filepath – The path to the file.

	compresslevel – The compression level. Use 11 for zopfli.

	hash_algorithm – The hash_algorithm to check the contents with.

	force – Always create a new ‘.gz’ file to overwrite the old one.

	Returns

	An integer that stands for the action taken. Matches with
the COMPRESSED, RECOMPRESSED and SKIPPED constants in this module.

	
gzip_static.compress_path(filepath: Union[str, os.PathLike], compresslevel: int = 9, block_size: int = 32768) → None

	Compress a file’s contents and write them to a ‘.gz’ file.

Similar to gzip -k <filepath>

	Parameters

	
	filepath – The path to the file

	compresslevel – The gzip compression level to use. Use 11 for zopfli
compression.

	block_size – The size of the chunks read from the file at once.

	
gzip_static.find_orphaned_files(dir: Union[str, os.PathLike], extensions: Container[str] = frozenset({'.css', '.htm', '.html', '.js', '.json', '.rss', '.svg', '.txt', '.xml', '.xsl'})) → Generator[str, None, None]

	Scan a directory recursively for ‘.gz’ files that do not have a parent file
with an extension in extensions.

For example find_orphaned_files(my_dir, set(".html")) will find
index.html.gz if index.html is not present. It will not find
myhostedarchive.tar.gz as .tar is not in the set of extensions.

	Parameters

	
	dir – The directory to scan.

	extensions – Extensions of parents file to include.

	Returns

	A generator of filepaths of orphaned ‘.gz’ files.

	
gzip_static.find_static_files(dir: Union[str, os.PathLike], extensions: Container[str] = frozenset({'.css', '.htm', '.html', '.js', '.json', '.rss', '.svg', '.txt', '.xml', '.xsl'})) → Generator[str, None, None]

	Scan a directory recursively for files that have an extension in the set
of extensions.

	Parameters

	
	dir – The directory to scan.

	extensions – A set of extensions to scan for.

	Returns

	A generator of filepaths that match the extensions.

	
gzip_static.get_extension(filename: str)

	The filename’s extension, if any.

This includes the leading period. For example: ‘.txt’

	
gzip_static.gzip_static(dir: Union[str, os.PathLike], extensions: Container[str] = frozenset({'.css', '.htm', '.html', '.js', '.json', '.rss', '.svg', '.txt', '.xml', '.xsl'}), compresslevel: int = 9, hash_algorithm=<built-in function openssl_sha1>, force: bool = False, remove_orphans: bool = False) → gzip_static.GzipStaticResult

	Gzip all static files in a directory and its subdirectories in an
idempotent manner.

	Parameters

	
	dir – The directory to recurse through.

	extensions – Extensions which are static files.

	compresslevel – The compression level that is used when compressing.

	hash_algorithm – The hash algorithm is used when checking file
contents.

	force – Recompress all files regardless if content has changed or
not.

	remove_orphans – Remove ‘.gz’ files where the parent static file is
no longer present.

	Returns

	A tuple with 4 entries. The number of compressed, recompressed,
skipped and deleted gzip files.

	
gzip_static.hash_file_contents(filepath: Union[str, os.PathLike], hash_algorithm=<built-in function openssl_sha1>, block_size: int = 32768) → bytes

	Read contents from a file and return the hash.

	Parameters

	
	filepath – The path to the file. Paths ending in ‘.gz’ will be
automatically decompressed.

	hash_algorithm – The hash algorithm to use. Must be
hashlib-compatible.

	block_size – The size of the chunks read from the file at once.

	Returns

	A digest of the hash.

	
gzip_static.read_extensions_file(filepath: Union[str, os.PathLike]) → Set[str]

	Read a file where there is an extension on each line

	Parameters

	filepath – The extensions file

	Returns

	a set of extensions.

Installation

gzip_static can be installed with pip install gzip_static. There are no
dependencies by default.

The following packages can be installed to enhance the functionality of
gzip_static.

	zopfli [https://pypi.org/project/zopfli/] adds zopfli compression to
gzip_static. Zopfli compressed files can be decompressed with any
gzip-compatible tool and the compressed size is a few percent smaller than
files compressed with gzip level 9. This comes with much increased
compression time (~125x increase or thereabouts depending on the website).
This works great for files that aren’t changed much or at all but always
downloaded like stylesheets.

	xxhash [https://pypi.org/project/xxhash/] speeds up the checksumming process.
This makes gzip-static about 28% faster when running on a website folder
with all the gzip files up to date.

	isal [https://pypi.org/project/isal/] speeds up the decompression of gzip
files during the checksumming process. This makes gzip-static about 66% faster
when running on a website folder with all the gzip files up to date.
Isal is only available on 64-bit platforms.

Together xxhash and isal decrease the runtime of checksumming by about 60%,
so it is about 2.5 times faster.

These dependencies are all optional and can be installed separately in the
environment or with the optional dependency commands:

	pip install gzip_static[zopfli] installs gzip_static and zopfli.

	pip install gzip_static[performance] installs gzip_static, xxhash and isal.

	pip install gzip_static[full] installs gzip_static, zopfli, xxhash and isal.

Technical considerations

Choosing a checksum

Different checksums were considered. MD5 is traditionally used for
checksumming, but also SHA-1, SHA-256 and SHA-512 see use as a hashing
algorithm nowadays. Traditionally, cyclic redundancy checks are performed.
These are available in the Python zlib libraries as the crc32 and
adler32 functions. A fast method called XXHash [https://cyan4973.github.io/xxHash/] is also available nowadays for hashing.
There are Python bindings available as a
package on PyPI.

As highlighted in this answer on bleepcoder by the XXHash author [https://bleepcoder.com/xxhash/468794876/xxhash-as-checksum-for-error-detection]
cyclic redundancy checks have slightly worse collisions than modern hash
algorithms.

The XXHash homepage [https://cyan4973.github.io/xxHash/] has a list of
algorithms and their speeds. The SHA1 hash algorithm is the fastest
algorithm available in hashlib.algorithms_guaranteed.
(This was verified on two different PC’s). Therefore it was chosen as default.
The XXH3_128 algorithm is used when XXhash is installed.

Speedy hashing of small gzip files

Speedy hashing of normal files is quite easy. Open a file, read it in blocks,
feed each block to the hasher and get a checksum in the end. Choose a decent
block size to speed it up slightly. (32K was used here. 128K is used by cat
so choosing more than Python’s default of 8K is quite common).

Speedy hashing of gzip files presents a problem. We can simply use Python’s
gzip.open which returns a GzipFile, but that is slow. Just like normal
open this creates an interface to read the file, but then it gets more
complicated. This gets wrapped into a _PaddedFile object which is then
wrapped into a _GzipReader object which is then wrapped by the GzipFile.
All these layers solve two problems:

	A controlled number of bytes can be read from the compressed file. Since the
compression ratio can differ along the file it is impossible to grab a
certain number of bytes and exactly know the size of the output once
decompressed. _GzipReader.read has mechanisms built-in to always output
the desired numbers of bytes.

	Gzip allows for multiple members (each consisting of header, compressed body and
trailer) to be concatenated together. After a member is decompressed the
remaining bytes in the file must be checked for another gzip member.

This functionality creates a lot of overhead. Using Python’s zlib.decompress
with wbits=31 solves this problem as it can compress an in-memory block
in its entirety. It cannot read multiple members but since these gzip files
are compressed by gzip_static itself we know they only contain one member.

However this presents another problem: files have to be read in memory entirely.
This was solved by using a zlib.decompressobj instead and using the
decompress method on that object. This works with streaming decompression.
It is not a problem that we do not know before which number of bytes is returned
by the function. This is typically in the 3-6 times the input bytes range.
At best gzip can compress at ratios of ~1000x. (Tested with all zeroes binary,
all ones binary, and a repetition of a single character). So if the input
block size is 8k, we can expect at most 8M bytes be read in memory. This is
acceptable, and this way even large static files of several hundreds of MB can
be checksummed in a streaming fashion.

The great advantage of this method is that most gzip’s will be smaller than 8k.
So only one decompress call is needed. This is almost as fast as in-memory
decompression with zlib.decompress but allowing streaming.

For example on docs.python.org compressing the static files compresses 6374
static files with a combined size of 481 MB. The resulting gzip sizes are
as follows.

	gzip 8K or below (one decompress call): 3516

	gzip 8K - 16K (two decompress calls): 1560

	gzip 16K -24K (three decompress calls): 565

	gzip 24K - 32K (four decompress calls): 308

	gzip 32k-64k (eight or less decompress calls): 356

	gzip larger than 64k: 69

In total 6305 (99%!) of the gzip files are smaller than 64K and can be
decompressed with eight or less calls. Since the gzip.GzipFile overhead
weighs in very heavy at these small file sizes using zlib.decompressobj
creates a notable speed improvement, reducing decompression time by about
~30% for the docs.python.org website.

The speedup can be even greater when using
python-isal [https://github.com/pycompression/python-isal]. Using its
isal_zlib.decompressobj reduces the decompression time with more than 50%.

No brotli support

Brotli [https://en.wikipedia.org/wiki/Brotli] is an excellent compression
algorithm. Most browsers support it. There are several reasons why it is not
supported by gzip_static.

	The ngx_brotli module is not provided as a package by either Debian, Ubuntu
or CentOS.

	Supporting two formats simultaneously makes the code more complex.

	brotli_static does not work well with gzip_static [https://github.com/google/ngx_brotli/issues/123]

This project was made to work with nginx’s gzip plugin to host my
websites. The gzip plugin is builtin in
even the simplest nginx package on Debian (nginx-light). Getting brotli to
work however is much more work. It needs to be compiled, but it needs to
compiled exactly with the right instructions. Brotli has been around
since 2013 and has tremendous advantages, but
ngx_brotli has not been packaged in Debian for 8 years. The last release
of Debian (bullseye) had 11294 new packages [https://www.debian.org/News/2021/20210814] but ngx_brotli is nowhere on the
horizon.

Once a properly working ngx_brotli module is packaged in Debian, I am happy
to add brotli support!

Usage

gzip-static usage

usage: gzip-static [-h] [-e EXTENSIONS_FILE] [-l {6,9,11} | --zopfli] [-f]
 [--remove-orphans] [-d]
 directory

Positional Arguments

	directory

	The directory containing the static site

Named Arguments

	-e, --extensions-file

	A file with extensions to consider when compressing. Use one line per extension. Check the default for an example. DEFAULT: /home/docs/checkouts/readthedocs.org/user_builds/gzip-static/envs/latest/lib/python3.7/site-packages/gzip_static-0.1.0-py3.7.egg/gzip_static/extensions.txt

Default: /home/docs/checkouts/readthedocs.org/user_builds/gzip-static/envs/latest/lib/python3.7/site-packages/gzip_static-0.1.0-py3.7.egg/gzip_static/extensions.txt

	-l, --compression-level

	Possible choices: 6, 9, 11

The compression level that will be used for the gzip compression. Use 11 for zopfli compression (if available). Default: 9

Default: 9

	--zopfli

	Use zopfli for the compression. Alias for -l 11 or –compression-level 11.

	-f, --force

	Force recompression of all earlier compressed files.

Default: False

	--remove-orphans

	Remove gzip files for which the parent file is missing and for which the extension is in the extensions file. For example: page3.html.gz present but no page3.html is present. In that case page3.html.gz will be removed.

Default: False

	-d, --debug

	Print debug information to stderr.

Default: False

gzip-static-find-orphans usage

usage: gzip-static-find-orphans [-h] [-e EXTENSIONS_FILE] directory

Positional Arguments

	directory

	The directory containing the static site

Named Arguments

	-e, --extensions-file

	A file with extensions to consider when compressing. Use one line per extension. Check the default for an example. DEFAULT: /home/docs/checkouts/readthedocs.org/user_builds/gzip-static/envs/latest/lib/python3.7/site-packages/gzip_static-0.1.0-py3.7.egg/gzip_static/extensions.txt

Default: /home/docs/checkouts/readthedocs.org/user_builds/gzip-static/envs/latest/lib/python3.7/site-packages/gzip_static-0.1.0-py3.7.egg/gzip_static/extensions.txt

 nav.xhtml

 Table of Contents

 		
 Welcome to gzip_static’s documentation!

_static/plus.png

_static/file.png

_static/minus.png

